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Abstract. By using Lie group theory, symmetries of the system of equations describing the 
stellar system are investigated. The most general quasihomologous transformations are 
found. The symmetries resulting from them enforce a corresponding temporal evolution 
of the mass of the system. 

1. Introduction 

In the group analysis of differential equations, one exploits the algebraic structure 
induced in the set of solutions of a given equation by its symmetry group. By using 
this method one can construct new solutions from the known ones. The method of 
group analysis has successfully been used in hydrodynamics [l]. It has been applied 
in astrophysics to investigate symmetries of structure equations of Newtonian stars in 
the radiative equilibrium [2]. It has been noticed in [2] that basic physical relations 
such as the Hertzspring-Russell diagram or the Eddington mass-luminosity depen- 
dence are associated with the existence of certain invariants of the structure equations. 
Our intention is to develop the idea that invariants of the structure equations may 
provide some important physical relations. 

In the present paper we apply the Lie group theory to equations of structure of a 
stellar system. We consider stellar systems which consists of stars with an equal mass. 
The flow of energy from the core to the halo is approximated by a gaseous model. 
Following Hachisu et a1 [3] we model the system as a conducting gaseous sphere. 
Effects of two-body encounters are modelled by a suitable choice of thermal conduc- 
tivity. 

Evolution of such systems has been extensively investigated. Hachisu et a1 [3] 
found that the collapse proceeded in a nearly self-similar way. The simplifications 
arising from this self-similarity were exploited by Lynden-Bell and Eggleton [4], who 
derived a dimensionless model for the late stages of core collapse. Inagaki and 
Lynden-Bell [ 51 constructed a self-similar postcollapse model that can be viewed as a 
continuation of their self-similar precollapse model of [4]. Goodman [6] constructed 
a self-similar solution for the asymptotic evolution of a system long after core collapse. 
Oscillations in the size of the core radius have been found numerically by Bettweiser 
and Sugimoto [7]. This result was confirmed by Goodman [8] who also presented a 
new regular self-similar model for postcollapse evolution. The problem of gravothermal 
oscillations provides an important stimulus for devising more realistic models of 
evolution. A more detailed review of these problems is given in [9]. 
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Although the role that similarity solutions play in science is as general as the role 
of dimensional arguments, the demand of self-similarity is a very strong constraint 
imposed on the solution of differential equations. We therefore introduce the notion 
of quasihomology as the simplest extension of self-similarity. We obtain the operator 
of infinitesimal transformations leaving the structure equations invariant. Expressions 
for the temporal evolution of the mass of the system are given and homology theorems 
are stated allowing one to construct new families of solutions from the known ones. 
It is quite possible that the obtained results could be used, in a similar manner to that 
of Chandrasekhar [ 101 in the theory of stellar interiors. 

The material is organised as follows. Section 2 gives necessary rudiments of the 
group method to analyse symmetries of differential equations. In 0 3 we consider 
group properties of structure equations of a stellar system. Conclusions are presented 
in S 4. 

2. Group method of investigating symmetries of differential equations 

Let us consider a Lie group G of point transformations in the space (x, U), where 
x = ( X I , .  . . , x " )  and U = (U', . . . , U"'), with the infinitesimal operator 

a a x = ['(x, u ) y +  Ta(x, U): 
ax all 

Now, let us consider the space (x, U, U), where 

i = l ,  . . . ,  n ; a = l ,  . . .  

The action of the group G extends itself onto U, and we can describe it by introducing 
an  extended group G acting in the space (x, d, U). Its infinitesimal operator is 

a x = Xl:'(X, U, U), 
I a u ,  

The demand that formulae U: = au"/dx' should be conserved under the action of 
group G determines functions [P in the following way: 

i P  = D , ( V 0 )  - U p n ( 5 ' )  (3) 
where D, = a/ax'+ U P  a/&, is the operator of full differentiation with respect to x'  
[ l ,  111. Operator ( 2 ) ,  such that (3) is fulfilled, is called an  extension of X to the first 
derivatives. Analogously, we can extend the action of group G to the sth derivatives 
and construct respective extended operators X. 

Given an  sth-order partial differential equation 

F ( x ,  u(x) ,  . . . , ?(XI)  = o  (4) 
the equation (4) defines a certain manifold M in the space (x, U, U,. . . , y). We 
say that equation (4) is invariant with respect to the group G if the rhanifold M is 
invariant with respect to the sth extension of G, i.e. G ( M )  = M. In terms of infinitesimal 
operators it means that 

XFI F - 0  = 0. ( 5 )  
Condition (5) forms a system of linear homogeneous differential equations determining 
5 and 7, coordinates of the operator X .  The point transformation generated by X is 
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called quasihomologous if 5' = [ ' ( x ' )  and q' = ~ ~ ( u ~ )  (no sum over i or a )  and is a 
generalisation of the homologous one, for which t ' ( x ' )  and q " (  U - )  are linear functions. 
Hereafter in this paper we shall consider quasihomologous transformations. 

3. Symmetries of structure equations of stellar systems 

Stellar systems can be treated as gas spheres in which the energy is transferred by 
thermal conductivity, in this way modelling two-body encounters within the system [ 4 ] .  

The structure equations are the following: 

ap G m  
-- - -- (hydrostatic equilibrium) 
am 4m-j 

ar 1 
am - 4.rrpr' 

(mass continuity) 

dT 1 1 
a m  p K  16.ir2pr4 

D s  a l  
a m  Dt 

- 

- - T- -- 

where m is the mass within the sphere of radius r, p the density, p the pressure, T the 
temperature, 1 the luminosity at the surface of the sphere of radius r, K the thermal 
conductivity coefficient, G the gravitational constant and s the entropy. 

System ( 6 )  is valid outside the core because in ( 6 d )  there are no terms connected 
with sources of energy such as so-called hard binary systems playing an  important 
role in the core. 

It is convenient to rewrite equations (6) in the following parametrisation [ 4 ] :  
7 T = a 2  p = p a -  = 1n(a3/p) 

where a is the one-dimensional velocity dispersion. The thermal conductivity 
coefficient K can be chosen as K = AG/a  [4], where A = 0.708m,ln(0.4N), m* is the 
mass of a single body and  N is the total number of bodies in the system. It can be 
assumed that A = constant [4]. 

By replacing the variable m in equations (6) by x =  m ( r ,  f ) / M ( r ) ,  where M is the 
total mass of the system, the Euler derivative can be written in the form 

Equations ( 6 )  now assume the form 

apa2  GM'X -- - -- 
ax  4 r r 4  

dr M 
ax  - 4.rrpr2 

a a  M 1 -- - -- 
ax  AG 32rr2p2r4 
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We now look for the symmetry transformations of equations (7)  generated by the 
operator 

a a a a a 
ax a t  J P  a r  au a1 

X = t ’ (  XI---+ a t’( t)-+ v ’ ( p ) - +  V 2 ( r ) - +  q3(u)-+  774(1)--. ( 8 )  

After having determined the operator X ,  according to ( 2 )  and ( 3 ) ,  we obtain the 
admissible equations ( 5 )  in the form 

-- 

dV2 d t ‘  M 77’ 277’ 
d r  dx M p r 

5’+-+-=0 

---++g+ d t l  d v 3  M 774 277‘ 477* 0 
d x d u M  1 p r 

a1 d v 4  +3Mu- M u 2  ap d v l  
G ( T - % )  ::(z3 ty) p a t (  d p  z2) 

P P 

d ( 1  - x )  2 M M ~ l ( 1  - x )  , 

aa 
a t  

+ 3 - ( uMt2 + M v 3 )  - 

77 - 5 MMul  ( - r t 1 + ( M M ) ‘ 5 2  p 2 r 4  p 3 r 4  32AGr’ 
- 

4 M M d (  1 - X )  MMl(  1 - X )  
v 2 +  p2r4 ?13+ 

- 
p2r5 

(M2ni )* t ’  
x ( l  - x )  

( 1  -2x)51+- 
Pr4 

- 4 M 2 M x ( l - x )  77, - M 2 6 f x ( 1 - x ) T , )  = 0. 
P r 5  p 2 r 4  

From ( 9 b )  we can see that a lp ,  v 2 =  azr  and [ I =  a , x +  b , ,  where a , ,  a,, a , ,  
b ,  are constants, and that 

- M 2  5 = cpz = constant. 

Formula (10 )  implies that the temporal evolution of the total mass of the system 
depends on the coordinate 5’ of the operator X :  
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In the particular case of homologous transformations, when t2 = a,t we obtain M (  t )  = 
M0t'2''~ which corresponds to the dependence given by Goodman [6]. 

From (9c) we see that v4= a41, v'= a,a+p,, where a 3 ,  a4, p3 are constants. 
From ( 9 d )  one obtains: 

Formula (11) gives us a differential equation for the coordinate 5'. Equation (12) 
implies that 3a In u/at = a In p l a t  since equating the second factor to zero leads to a 
contradiction. This means that as/& = 0, i.e. 

Ds M as 
- (1-x)- .  

Dt M ax 

By substituting the components of X into (9a)-(9d) we obtain that 

(13) 5 13 
f f 2  = - I f f ,  f f ,  = -2a1 f fq  = - i f f  1 9 2  = - - y f f , .  

All remaining constants are equal to zero. 

and (11). 
In order to determine 5' we have to solve the system of differential equations (10) 

Expressing 5' by M, we obtain: 

where p = a4/cp2 =A. This equation can be integrated by separating the variables to 
obtain 

5' ( t )  = 5oM(t) exp(-P/M(t))  (14) 

where Eo is an integration constant. 
By substituting (14) into (10) we obtain 

If cp2/50 < 0, the loss of mass from the centre decreases the binding energy of the system. 
To integrate equation (15) one separates the variables and obtains 

where to is an integration constant. 

of the total mass of the system. 
Formula (16) gives us an implicit form of M( t), i.e. it describes temporal evolution 

Having the operator X determined: 

a a 5  a a a X = to exp(-p/ M (  t ) )  M( t )  -+ a l p -  - ?al  r- - 2a,a2-  - ;al 1; 
a t  dp dr a a  
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we obtain finite transformations of variables t ,  p ,  r, a and 1 which leave the form of 
the structure equations ( 7 )  invariant. These transformations are as follows: 

P = p e x p a ,  r =  r exp(-+a , )  (18) 

6 = a exp( -2a , )  r= I exp(-;a,) 

Operator ( 17) possesses four independent invariants which are solutions of the 
following system: 

2 d t  d p  2 d r  1 d a  2 d l  
1 3 ( 1 n M ) '  p 5 r  2 u  7 1 '  

- _ _ - - -  - - 

In the first term of (19) we have taken into account the formula (10). These invariants 
can be chosen in the following way: 

(20) 

By using these invariants and  the finite transformations (18) we can now formulate 
an  homology theorem describing the construction of new families of solutions. 

9 - aM-4/13 4 - lM-7f '3  9, = p M 2 / l 3  9a,= rM-"l3 3 -  4 -  

Theorem. If p ( t ) ,  r ( t ) ,  a ( [ ) ,  l ( t )  are solutions of system (71, then also 

p ( f ) M ( t 3 2 ' 1 3  exp a ,  r (  i) M ( t3"/" exp( - $ a , )  

u( f )M(T) -""  exp(-2a , )  I(T)M(t3-7'13 exp(-;a,) 

are solutions of the same system (a, is the group parameter). This theorem is analogous 
to homology theorems stated by Chandrasekhar [ 101 which play an  important role in 
the theory of stellar interiors. 

4. Conclusion 

We have characterised, by computing an  infinitesimal operator, the structure of the 
group admissible by a system of equations describing a stellar system modelled as a 
gas sphere. We have also shown that, in the most general case, the equations admit 
a one-parameter group of quasihomologous transformations. In the particular case 
of homologous transformations the results of Goodman [6] are recovered. 
Quasihomologous symmetries enforce an  appropriate evolution of the mass of the 
system described by formula (16). By using this formula together with invariants (20) 
one can obtain the corresponding evolution of other physical parameters such as the 
density, the radius and the luminosity. Invariants given by (20) are basis invariants, 
i.e. any combination of them remains an invariant. 

We have finally formulated a homology theorem describing the construction of 
new families of solutions from the known ones. 

In the context of gravothermal oscillations, a more general form of the symmetry 
operator X should be considered, but this requires further investigation. 
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